Abuse Trap
  Home  Impressum  Copyright

{The Universe as a plot of God}

 

In many works on Astronomy I find it distinctly stated that the laws of Kepler are the basis of the great principle, Gravitation. This idea must have arisen from the fact that the suggestion of these laws by Kepler, and his proving them à posteriori to have an actual existence, led Newton to account for them by the hypothesis of Gravitation, and, finally, to demonstrate them à priori, as necessary consequences of the hypothetical principle. Thus so far from the laws of Kepler being the basis of Gravity, Gravity is the basis of these laws – as it is, indeed, of all the laws of the material Universe which are not referable to Repulsion alone.

The mean distance of the Earth from the Moon – that is to say, from the heavenly body in our closest vicinity – is 237,000 miles. Mercury, the planet nearest the Sun, is distant from him 37 millions of miles. Venus, the next, revolves at a distance of 68 millions: – the Earth, which comes next, at a distance of 95 millions: – Mars, then, at a distance of 144 millions. Now come the eight Asteroids (Ceres, Juno, Vesta, Pallas, Astræa, Flora, Iris, and Hebe) at an average distance of about 250 millions. Then we have Jupiter, distant 490 millions; then Saturn, 900 millions; then Uranus, 19 hundred millions; finally Neptune, lately discovered, and revolving at a distance, say of 28 hundred millions. Leaving Neptune out of the account – of which as yet we know little accurately and which is, possibly, one of a system of Asteroids – it will be seen that, within certain limits, there exists an order of interval among the planets. Speaking loosely, we may say that each outer planet is twice as far from the Sun as is the next inner one. May not the order here mentioned – may not the law of Bode – be deduced from consideration of the analogy suggested by me as having place between the solar discharge of rings and the mode of the atomic irradiation?

The numbers hurriedly mentioned in this summary of distance, it is folly to attempt comprehending, unless in the light of abstract arithmetical facts. They are not practically tangible ones. They convey no precise ideas. I have stated that Neptune, the planet farthest from the Sun, revolves about him at a distance of 28 hundred millions of miles. So far good: – I have stated a mathematical fact; and, without comprehending it in the least, we may put it to use – mathematically. But in mentioning, even, that the Moon revolves about the Earth at the comparatively trifling distance of 237,000 miles, I entertained no expectation of giving any one to understand – to know – to feel – how far from the Earth the Moon actually is. 237,000 miles! There are, perhaps, few of my readers who have not crossed the Atlantic ocean; yet how many of them have a distinct idea of even the 3,000 miles intervening between shore and shore? I doubt, indeed, whether the man lives who can force into his brain the most remote conception of the interval between one milestone and its next neighbor upon the turnpike. We are in some measure aided, however, in our consideration of distance, by combining this consideration with the kindred one of velocity. Sound passes through 1100 feet of space in a second of time. Now were it possible for an inhabitant of the Earth to see the flash of a cannon discharged in the Moon, and to hear the report, he would have to wait, after perceiving the former, more than 13 entire days and nights before getting any intimation of the latter.

However feeble be the impression, even thus conveyed, of the Moon's real distance from the Earth, it will, nevertheless, effect a good object in enabling us more clearly to see the futility of attempting to grasp such intervals as that of the 28 hundred millions of miles between our Sun and Neptune; or even that of the 95 millions between the Sun and the Earth we inhabit. A cannon-ball, flying at the greatest velocity with which a ball has ever been known to fly, could not traverse the latter interval in less than 20 years; while for the former it would require 590.

Our Moon's real diameter is 2160 miles; yet she is comparatively so trifling an object that it would take nearly 50 such orbs to compose one as great as the Earth.

The diameter of our own globe is 7912 miles – but from the enunciation of these numbers what positive idea do we derive?

If we ascend an ordinary mountain and look around us from its summit, we behold a landscape stretching, say 40 miles, in every direction; forming a circle 250 miles in circumference; and including an area of 5000 square miles. The extent of such a prospect, on account of the successiveness with which its portions necessarily present themselves to view, can be only very feebly and very partially appreciated: – yet the entire panorama would comprehend no more than one 40,000th part of the mere surface of our globe. Were this panorama, then, to be succeeded, after the lapse of an hour, by another of equal extent; this again by a third, after the lapse of another hour; this again by a fourth after lapse of another hour – and so on, until the scenery of the whole Earth were exhausted; and were we to be engaged in examining these various panoramas for twelve hours of every day; we should nevertheless, be 9 years and 48 days in completing the general survey.

But if the mere surface of the Earth eludes the grasp of the imagination, what are we to think of its cubical contents? It embraces a mass of matter equal in weight to at least 2 sextillions, 200 quintillions of tons. Let us suppose it in a state of quiescence; and now let us endeavor to conceive a mechanical force sufficient to set it in motion! Not the strength of all the myriads of beings whom we may conclude to inhabit the planetary worlds of our system – not the combined physical strength of all these beings – even admitting all to be more powerful than man – would avail to stir the ponderous mass a single inch from its position.

 


 &c; textlog.de 2004 • 19.04.2024 02:40:56 •
Seite zuletzt aktualisiert: 14.06.2005